Reading Dependencies from Polytree-Like Bayesian Networks
نویسنده
چکیده
We present a graphical criterion for reading dependencies from the minimal directed independence map G of a graphoid p when G is a polytree and p satisfies composition and weak transitivity. We prove that the criterion is sound and complete. We argue that assuming composition and weak transitivity is not too restrictive.
منابع مشابه
Reading Dependencies from Polytree-Like Bayesian Networks Revisited
We present a graphical criterion for reading dependencies from the minimal directed independence map G of a graphoid p, under the assumption that G is a polytree and p satisfies weak transitivity. We prove that the criterion is sound and complete. We argue that assuming weak transitivity is not too restrictive.
متن کاملDiscrete Bayesian Networks: The Exact Posterior Marginal Distributions
In a Bayesian network, we wish to evaluate the marginal probability of a query variable, which may be conditioned on the observed values of some evidence variables. Here we first present our “border algorithm,” which converts a BN into a directed chain. For the polytrees, we then present in details, with some modifications and within the border algorithm framework, the “revised polytree algorit...
متن کاملComplexity of Inferences in Polytree-shaped Semi-Qualitative Probabilistic Networks
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that...
متن کاملsal Trees fro n - nation * Dan
In constructing probabilistic networks from human judgments, we use causal relationships to convey useful patterns of dependencies. The converse task, that of inferring causal relationships from patterns of dependencies, is far less understood. Th’ 1s paper establishes conditions under which the directionality of some interactions can be determined from non-temporal probabilistic information an...
متن کاملA Variational Approach for Approximating Bayesian Networks by Edge Deletion
We consider in this paper the formulation of approximate inference in Bayesian networks as a problem of exact inference on an approximate network that results from deleting edges (to reduce treewidth). We have shown in earlier work that deleting edges calls for introducing auxiliary network parameters to compensate for lost dependencies, and proposed intuitive conditions for determining these p...
متن کامل